|
The figure shows a Gaussian surface in the form of a cylinder of radius \(R\) immersed in a uniform electric field \(\vec{E}\), with the cylinder axis parallel to the field. What is the flux \(\Phi\) of the electric field through this closed surface? 該圖顯示了一個半徑為 \(R\) 的圓柱體形式的高斯表面,該圓柱體浸入均勻的電場 \(\vec{E}\) 中,圓柱軸平行於電場。 通過這個封閉表面的電場通量 \(\Phi\) 是多少? |
A nonuniform electric field given by \(\vec{E}=3.0x \,\hat{i} + 4.0 \, \hat{j}\) pierces the Gaussian cube shown in the figure. (\(E\) is in newtons per coulomb and \(x\) is in meters.) What is the electric flux through the right face, the left face, and the top face? 由 \(\vec{E}=3.0x \,\hat{i} + 4.0 \, \hat{j}\) 給出的非均勻電場穿過圖中所示的高斯立方體。 (\(E\) 以牛頓每庫侖為單位,\(x\) 以米為單位。)通過右面、左面和頂面的電通量是多少? |
The figure shows five charged lumps of plastic and an electrically neutral coin. The cross section of a Gaussian surface \(S\) is indicated. What is the net electric flux through the surface if
\[q_1= q_4=+3.1 \,\text{nC}, q_2=q_5=-5.9\,\text{nC}, \, q_3=-3.1 \,\text{nC}?\] 該圖顯示了五個帶電的塑料塊和一個電中性硬幣。 表示了高斯曲面 \(S\) 的橫截面。 如果 \[q_1= q_4=+3.1 \,\text{nC}, q_2=q_5=-5.9\,\text{nC}, \, q_3=-3.1 \,\text{nC}?\] 則通過表面的淨電通量是多少? |
A nonuniform electric field given by \(\vec{E}=3.0x \,\hat{i} + 4.0 \, \hat{j}\) pierces the Gaussian cube shown in the figure. (\(E\) is in newtons per coulomb and \(x\) is in meters.) What is the net charge enclosed by the Gaussian cube? 由 \(\vec{E}=3.0x \,\hat{i} + 4.0 \, \hat{j}\) 給出的非均勻電場穿過圖中所示的高斯立方體。 (\(E\) 的單位是牛頓每庫侖,\(x\) 的單位是米。)高斯立方體包圍的淨電荷是多少? |
The figure (a) shows a cross section of a spherical metal shell of inner radius \(R\). A point charge of \(5.0 \, \mu\)C is located at a distance \(R/2\) from the center of the shell. If the shell is electrically neutral, what are the (induced) charges on its inner and outer surfaces? Are those charges uniformly distributed? What is the field pattern inside and outside the shell? 圖 (a) 顯示了內半徑為 \(R\) 的球形金屬殼的橫截面。 \(5.0\, \mu\)C 的點電荷位於距離殼中心 \(R/2\) 處。 如果殼是電中性的,它的內外表面的(感應)電荷是多少? 這些費用是均勻分佈的嗎? 外殼內外的場模式是什麼? |
因為殼是電中性的,所以它的內壁只有在電子的情況下才可以有 \(+5.0 \, \mu\)C 的電荷,總電荷為 \(5.0\,\mu\)C,離開內壁,移動到外壁。它們在那裡均勻分佈,如圖 (b) 所示。這種負電荷分佈是均勻的,因為殼是球形的,並且因為內壁上正電荷的傾斜分佈不能在殼中產生電場來影響外壁上的電荷分佈。外殼內部和外部的場線大致如圖(b)所示。所有的場線與殼和點電荷垂直相交。在殼內,由於正電荷分佈的偏斜,場線的圖案是偏斜的。在殼外,圖案與點電荷居中而殼缺失一樣。事實上,無論點電荷碰巧位於殼內的哪個位置,這都是正確的。 |