(a) The current density in a cylindrical wire of radius \(R = 2.0\) mm is uniform across a cross section of the wire and is \(J = 2.0 \times 10^5\) A/m
2. What is the current through the outer portion of the wire between radial distances \(R/2\) and \(R\) (figure (a))? (b) Suppose, instead, that the current density through a cross section varies with radial distance \(r\) as \(J = ar^2\), in which \(a = 3.0 \times 10^{11}\) A/m
4 and \(r\) is in meters. What now is the current through the same outer portion of the wire?
(a)半徑為 \(R = 2.0\) mm 的圓柱形導線中的電流密度在導線的橫截面上是均勻的,\(J = 2.0 \times 10^5\) A/m
2 。 在徑向距離 \(R/2\) 和 \(R\) 之間通過導線外部的電流是多少(圖 (a))? (b) 相反,假設通過橫截面的電流密度隨徑向距離 \(r\) 變化為 \(J = ar^2\),其中 \(a = 3.0 \times 10^{11}\) A/m
4 和 \(r\) 以米為單位。 現在通過電線的同一外部部分的電流是多少?
(a)均勻的電流密度:
\[A'=\pi R^2 - \pi \left(\dfrac{R}{2}\right)^2=\pi \left(\dfrac{3R^2}{4}\right)\ \\ =\dfrac{3\pi}{4}(0.002)^2=9.424 \times 10^{-6} \, \text{m}^2 \]
\[i=JA'=(2.0 \times 10^5)(9.424 \times 10^{-6})=1.9 \, \text{A} \]
(b)For \(J(r)=ar^2\),
\[\vec{J} \cdot d\vec{A}=JdA\]
\[i=\int \vec{J} \cdot d\vec{A}=\int JdA \\ =\int_{R/2}^{R} \, ar^2 (2\pi r dr)=2\pi a \int_{R/2}^{R} \, r^3 \,dr \\ 2\pi a \left[ \dfrac{r^4}{4} \right]_{R/2}^R = \dfrac{\pi a}{2} \left[ R^4 - \dfrac{R^4}{16} \right] = \dfrac{15}{32} \pi a R^4 \\ =\dfrac{15}{32} \pi (3.0 \times 10^{11})(0.002)^4=7.1 \, \text{A}.\]