What is the distance on screen \(C\) in the figure between adjacent maxima near the center of the interference pattern? The wavelength \(\lambda\) of the light is 546 nm, the slit separation \(d\) is 0.12 mm, and the slit–screen separation \(D\) is 55 cm. Assume that \(\theta\) is small enough to permit use of the approximations \(\sin \theta \simeq \tan \theta \simeq \theta\), in which \(\theta\) is expressed in radian.
圖中屏幕\(C\)上乾涉圖案中心附近相鄰最大值之間的距離是多少? 光的波長 \(\lambda\) 為 546 nm,狹縫間距 \(d\) 為 0.12 mm,狹縫-屏幕間距 \(D\) 為 55 cm。 假設 \(\theta\) 小到足以允許使用近似值 \(\sin \theta \simeq \tan \theta \simeq \theta\),其中 \(\theta\) 以弧度表示。
\(\tan \theta \simeq \theta = \dfrac{y_m}{D}\)
Consider the angle \(\theta\) for the m-th maximum,
\(d\sin\theta=m\lambda; \Rightarrow \sin \theta \simeq \theta = \dfrac{m \lambda}{d}\)
\(y_m=\dfrac{m \lambda D}{d}\)
For (m+1)-th maximum,
\(y_{m+1}=\dfrac{(m+1) \lambda D}{d}\)
\[
\begin{equation}
\begin{split}
\Delta y &=y_{m+1}-y_m = \dfrac{\lambda D}{d} \\
&=\dfrac{(546 \times 10^{-9})(55 \times 10^{-2})}{0.12 \times 10^{-3}}(1.6-1.0)
&=2.50 \times 19^{-3} \text{m}
\end{split}
\end{equation}
\]