GPN2-L07

A car battery with a 12 V emf and an internal resistance of 0.040 Ω is being charged with a current of 50 A. What are (a) the potential difference V across the terminals, (b) the rate P_r of energy dissipation inside the battery, and (c) the rate P_{emf} of energy conversion to chemical form? When the battery is used to supply 50 A to the starter motor, what are (d) V and (e) P_r ? (05小題)

When the battery is being charged: (a) V 01: ANS:=14 (a) The potential difference is $V = \varepsilon + ir = 12 \text{ V} + (50 \text{ A})(0.040 \Omega) = 14 \text{ V}$. (b) W (b) $P = t^2 r = (50 \text{ A})^2 (0.040 \Omega) = 1.0 \times 10^2 \text{ W}.$ 02: ANS:=1.0E2 (c) W (c) $P' = IV = (50 \text{ A})(12 \text{ V}) = 6.0 \times 10^2 \text{ W}.$ 03: ANS:=6.0E2 When the battery is use (d) In this case $V = \varepsilon - ir = 12 \text{ V} - (50 \text{ A})(0.040 \Omega) = 10 \text{ V}$. (d) _____ V (e) $P_r = t^2 r = (50 \text{ A})^2 (0.040 \Omega) = 1.0 \times 10^2 \text{ W}.$ 04: ANS:=10 (e) W

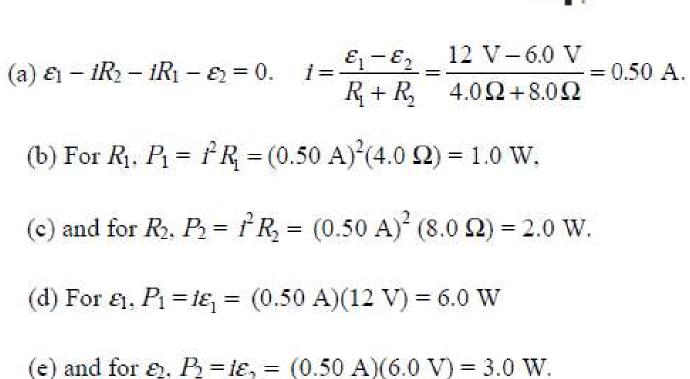
05: ANS:=1.0E2

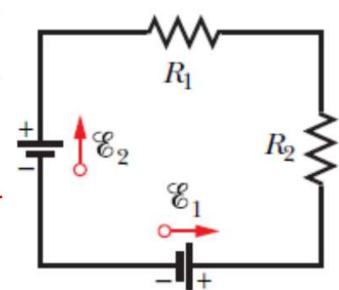
In the figure, the ideal batteries have emfs $\epsilon_1 = 12$ V and $\epsilon_2 = 6.0$ V and the resistors have resistances $R_1 = 4.0 \Omega$ and $R_2 = 8.0 \Omega$. What are (a) the current, the dissipation rate in (b) resistor 1 and (c) resistor 2, and the energy transfer rate in (d) battery 1 and (e) battery 2? Is energy being supplied or absorbed by ? (05小題)

06: ANS:=0.5

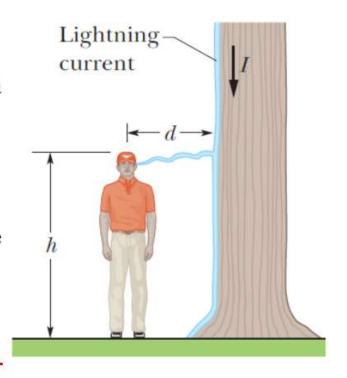
(b)
$$P_{R_1} = W$$

07: ANS:=1.0


(c)
$$P_{R_2} = W$$


- 08: ANS:=2.0
- (d) $P_{\epsilon_1} = W$

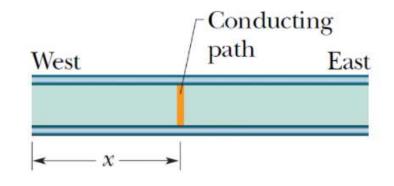
09: ANS:=6.0


(e) $P_{\epsilon_1} = _$ W

<u>10:</u> ANS:=<u>3.0</u>

Side flash. The figure indicates one reason no one should stand under a tree during a lightning storm. If lightning comes down the side of the tree, a portion can jump over to the person, especially if the current on the tree reaches a dry region on the bark and thereafter must travel through air to reach the ground. In the figure, part of the lightning jumps through distance d in air and then travels through the person (who has negligible resistance relative to that of air). The rest of the current travels through air alongside the tree, for a distance h. If d/h = 0.400 and the total current is I = 5000 A, what is the current through the person? (01/小題)

____A


<u>11</u>: **ANS**:=**<u>3571</u>** across the two paths are the same, $V_1 = V_2$ $i_1 R_1 = i_2 R_2$, $i = i_1 + i_2 = 5000$ A.

$$R = \rho L / A \qquad i_1 d = i_2 h \implies i_2 = i_1 (d / h).$$

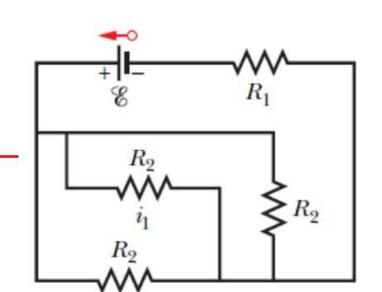
With
$$d/h = 0.400$$
, we get $i_1 = 3571$ A and $i_2 = 1429$ A

the current through the person is $I_1 = 3571 \text{ A}$

A 10-km-long under-ground cable extends east to west and consists of two parallel wires, each of which has resistance 13 Ω /km. An electrical short develops at distance x from the west end when a conducting path of resistance R connects the wires (the figure). The resistance of the wires and the short is then 100 Ω when measured from the east end and 200 Ω when measured from the west end.What are (a) x and (b) R? (02小題)

(a) <i>x</i> =km	(a) We denote $L = 10$ km and $\alpha = 13 \Omega/\text{km}$. Measured from the east end we have
12: ANS:=6.9	$R_1 = 100 \ \Omega = 2 \alpha (L - x) + R,$
(b) R =Ω	
<u>13:</u> ANS:= <u>20</u>	and measured from the west end $R_2 = 200 \Omega = 2 \alpha x + R$. Thus,
	$x = \frac{R_2 - R_1}{4\alpha} + \frac{L}{2} = \frac{200\Omega - 100\Omega}{4(13\Omega/\text{km})} + \frac{10\text{km}}{2} = 6.9\text{km}.$
	(b) Also, we obtain

$$R = \frac{R_1 + R_2}{2} - \alpha L = \frac{100\,\Omega + 200\,\Omega}{2} - (13\,\Omega/\text{km})(10\,\text{km}) = 20\,\Omega$$

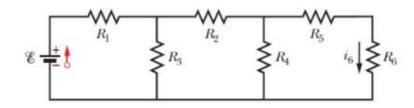

In the figure, $R_1 = 6.00 \Omega$, $R_2 = 18.0 \Omega$, and the ideal battery has emf $\epsilon = 12.0 V$. What are the (a) size and (b) How much energy is dissipated by all four resistors in 1.00 min? (02小題)

(a) _____ A

14: ANS:=0.333

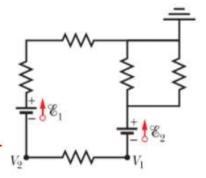
(b) _____ J

15: ANS:=720


(a) The parallel set of three identical $R_2 = 18 \Omega$ resistors reduce to $R = 6.0 \Omega$, which is now in series with the $R_1 = 6.0 \Omega$ resistor at the top right, so that the total resistive load across the battery is $R' = R_1 + R = 12 \Omega$. Thus, the current through R' is (12V)/R' = 1.0 A, which is the current through R. By symmetry, we see one-third of that passes through any one of those 18 Ω resistors; therefore, $I_1 = 0.333 A$.

(b) We use Eq. 26-27: $P = t^2 R' = (1.0 \text{ A})^2 (12 \Omega) = 12 \text{ W}$. Thus, in 60 s, the energy dissipated is (12 J/s)(60 s) = 720 J.

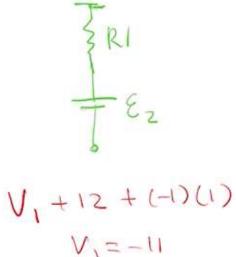
The current in a single-loop circuit with one resistance *R* is 5.0 A. When an additional resistance of 2.0 Ω is inserted in series with *R*, the current drops to 4.0 A. What is *R*? (01/小題)

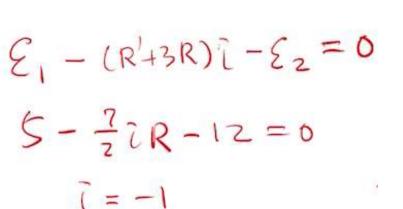

 Ω Let the emf be V. Then V = iR = i'(R + R'), where i = 5.0 A, i' = 4.0 A and $R' = 2.0 \Omega$. We solve for R: 16: ANS:=8.0 $R = \frac{IR}{I} = \frac{(4.0 \text{ A})(2.0 \Omega)}{5.0 \text{ A}} = 8.0 \Omega.$ Problem 7 In the figure, $R_1 = 100 \Omega$, $R_2 = 50\Omega$, and the ideal batteries have emfs $\epsilon_1 = 6.0$ V, $\epsilon_2 = 5.0$ V, and $\epsilon_3 = 4.0$ V. Find (a) the current in resistor 1, (b) the current in resistor 2 (absolute value), and (c) the potential difference between points a and b. (03小題) Let I_1 take it to be positive if it is to the right. (a) A 12 take it to be positive if it is upward. 17: ANS:=0.050 $\varepsilon_2 - i_1 R_1 = 0$. $i_1 = \frac{\varepsilon_2}{R_1} = \frac{5.0 \text{ V}}{100 \Omega} = 0.050 \text{ A}.$ (b) _____ A $\varepsilon_1 - \varepsilon_2 - \varepsilon_3 - i_2 R_2 = 0 \; .$ 18: ANS:=0.06 (c) V $I_2 = \frac{\varepsilon_1 - \varepsilon_2 - \varepsilon_3}{R_2} = \frac{6.0 \text{ V} - 5.0 \text{ V} - 4.0 \text{ V}}{50 \text{ O}} = -0.060 \text{ A}, \qquad |I_2| = 0.060 \text{ A}.$ 19: ANS:=9.0 $V_a = V_b + \varepsilon_3 + \varepsilon_2, \quad V_a - V_b = \varepsilon_3 + \varepsilon_2 = 4.0 \text{ V} + 5.0 \text{ V} = 9.0 \text{ V}.$

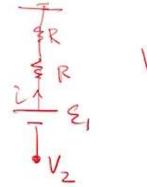
In the figure, the current in resistance 6 is i_6 = 1.40 A and the resistances are $R_1 = R_2 = R_3 = 2.00$ $\Omega, R_4 = 16.0 \Omega, R_5 = 8.00 \Omega$, and $R_6 = 4.00 \Omega$. What is the emf of the ideal battery? (01小題)

V	V_4 , is equal to the sum of the voltages across R_5 and R_6 :
<u>20:</u> ANS: = <u>48.3</u>	$V_4 = i_6(R_5 + R_6) = (1.40 \text{ A})(8.00 \Omega + 4.00 \Omega) = 16.8 \text{ V}.$
	$i_4 = V_4/R_4 = 16.8 \text{ V}/(16.0 \Omega) = 1.05 \text{ A}.$
	$i_2 = i_4 + i_6 = 1.05 \text{ A} + 1.40 \text{ A} = 2.45 \text{ A},$
	$V_2 = (2.00 \ \Omega)(2.45 \ \text{A}) = 4.90 \ \text{V}.$
	The loop rule tells us the voltage across R_3 is
	$V_3 = V_2 + V_4 = 21.7 \text{ V}$
	$I_3 = V_3/(2.00 \ \Omega) = 10.85 \ A_3$
	$i_1 = i_2 + i_3 = 2.45 \text{ A} + 10.85 \text{ A} = 13.3 \text{ A},$
	$V_1 = (13.3 \text{ A})(2.00 \Omega) = 26.6 \text{ V}.$
	$\varepsilon = V_1 + V_3 = 26.6 \text{ V} + 21.7 \text{ V} = 48.3 \text{ V}.$

In the figure, the ideal batteries have emfs $\mathscr{E}_1 = 5.0$ V and $\mathscr{E}_2 = 12.0$ V, the resistances are each 2.0 Ω , and the potential is defined to be zero at the grounded point of the circuit. What are potentials (a) V_1 and (b) V_2 at the indicated points? (02小題)


<u>21:</u> ANS:=<u>-11</u>


 $(a)V_1 = ____$


(b) V_2 =_____V

22: ANS:=-9

 $R' = \frac{R}{2} =$

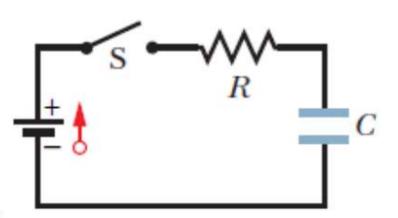
R=2

$$V_2 + 5 - (-1)(4) = 0$$

 $V_2 = -9$

In the figure, ϵ =12.0 V, R_1 = 2000 Ω , R_2 = 3000 Ω , and $R_3 = 4000 \Omega$. What are the potential differences (a) $V_A - V_B$, (b) $V_B - V_C$, (c) $V_C - V_D$, and (d) $V_A - V_C$? (04小題) (a) $V_A - V_B = ___ V$ $i_3 = i_1 - i_2$. 23: ANS:=5.25 $\varepsilon - i_1 R_2 - i_1 R_1 = 0$ (b) $V_B - V_C =$ _____ V $\varepsilon - 2i_1R_1 - (i_1 - i_2)R_3 = 0$ 24: ANS:=1.50 h = 0.002625 A, h = 0.00225 A(c) $V_C - V_D = _$ V $I_3 = I_1 - I_2 = 0.000375$ A. $V_A - V_B = I_1 R_1 = 5.25 \text{ V}.$ 25: ANS:=5.25 (d) $V_A - V_C = ___ V$ (b) It follows also that $V_B - V_C = I_3 R_3 = 1.50$ V. 26: ANS:=6.75 (c) We find $V_C - V_D = I_1 R_1 = 5.25$ V. (d) Finally, $V_A - V_C = i_2 R_2 = 6.75$ V.

What multiple of the time constant τ gives the time taken by an initially uncharged capacitor in an *RC* series circuit to be charged to 99.0% of its final charge? (01小 題)


27: ANS:=4.61

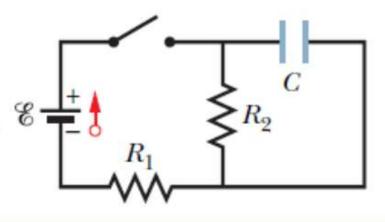
au

$$q = C\varepsilon (1 - e^{-t/\tau}), \qquad \tau = RC$$

C is the capacitance, ε is applied emf, $q_{eq} = C\varepsilon$. The equilibrium charge $q = 0.99 q_{eq} = 0.99 C\varepsilon$, $0.99 = 1 - e^{-t/\tau}$. $e^{-t/\tau} = 0.01$. $t/\tau = -\ln 0.01 = 4.61$ or $t = 4.61 \tau$.

Switch S in the figure is closed at time t = 0, to begin charging an initially uncharged capacitor of capacitance $C = 15.0 \mu$ F through a resistor of resistance $R = 20.0 \Omega$. At what time is the potential across the capacitor equal to that across the resistor? (01/小題)

ms


28: ANS:=0.208

the resistor voltage be equal to the capacitor voltage becomes $iR = V_{cap}$, or

$$V e^{-t/RC} = V(1 - e^{-t/RC})$$

This leads to $t = RC \ln 2$, or t = 0.208 ms.

In the figure, $R_1 = 10.0 \text{ k}\Omega$, $R_2 = 15.0 \text{ k}\Omega$, $C = 0.400 \mu$ F, and the ideal battery has emf $\epsilon = 20.0 \text{ V}$. First, the switch is closed a long time so that the steady state is reached. Then the switch is opened at time t = 0. What is the current in resistor 2 at t = 4.00 ms? (01/小題)

_____A

29: ANS:=4.11E-4 In the steady state situation, $V_0 = R_2 \frac{\varepsilon}{R_1 + R_2} = (15.0 \text{k}\Omega) \left(\frac{20.0 \text{V}}{10.0 \text{k}\Omega + 15.0 \text{k}\Omega} \right) = 12.0 \text{V}.$ $V = V_0 e^{-t/RC} \quad \text{after the switch is opened (at } t = 0).$ $t = 0.00400 \text{ s}, \quad V = (12) e^{-0.004/(15000)(0.4 \times 10^{-6})} = 6.16 \text{ V}.$ the current through R_2 is $6.16/15000 = 4.11 \times 10^{-4} \text{ A}.$